CITADIN® M80 PERMEABLE PAVER

REGULAR FINISH

66 Å ⇔ CITADIN® M80 PERMEABLE PAVER **6**

	HEIGHT/WIDTH/LENGTH			
	DIMENSIONS (CM)	DIMENSIONS (IN)	IMENSIONS (IN)	
	8 x 16,3 x 32,5	31/8 x 63/8 x 1213/16		
	Joint 8mm Ouvert	ure surface 7,26%		
Jnits/Surface	18,93 / m ²	1,76 / ft ²		
Qty/row	1,11 m ²	11,94 ft ²		
Qty/cube	8,88 m ²	95,52 ft ² 8	3 rows	
Weight/unit avg.	10 kg	22 lb		
Weight/cube	1643 kg	3622 lb		

SPECIFICATIONS	CODES	COLORS
Regular finish	PPC-419R-02	Ice gray
9	PPC-419R-15	Gray and charcoal

COLORS

Ice gray

Gray and charcoal

PATTERN

Runner pattern

TECHNICAL INFORMATIONS

Product	Standard	Compressive strength	Resistance to freeze-thaw cycles in a saline solution	Water absorption	Dimensional tolerances
Citadin M80 permeable paver	CSA A231.2	50 MPa (7250 psi)	Maximum loss of initial weight in a saline solution (NaCl 3 %): 225 g/m² (0,74 oz / fr²) after 28 cycles 500 g/m² (1,64 oz / ft²) after 49 cycles	5 % maximum	Length: -1 mm to +2 mm (-1/32 in to + 5/64 in) Width: -1 mm to +2 mm (-1/32 in to + 5/64 in) Height: ±3 mm (±1/8 in)

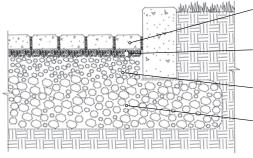
PERMEABLE PAVER 66

PRODUCT DESCRIPTION:

The installation of Bolduc's permeable pavers over an open graded crushed stone base, that acts like a retention reservoir, creates a temporary storage system for surface water runoff. This system can replace traditional impermeable paving in order to control and/or reduce surface water runoff, minimize the need for temporary water retention structures, and improve the quality of surface water runoff. Rainwater recharges the water table, and fewer pollutants and sediments enter waterways, helping the environment.

Bolduc paver models that can be used as permeable paver or as regular residential paver.

AN EXAMPLE OF PERMEABLE PAVERS


The preferred option is to let the water that gets stored in the crushed stone reservoir infiltrate the native soil. This can be accomplish if the following conditions are achieved:

- Native soil (sub grade) below the reservoir must have a water permeability greater than 0.5 inches/hr.
- The base of the crushed stone reservoir must be flat.
- The crushed stone storage system must be at least 2 feet above the water table and more than 100 feet from a drinking water supply (well).
- The paved surface of the storage system must have a slope of at least 1% but no more than 5%.

In some cases water can't or must not be absorbed by the existing soil and must instead be redirected toward a more conventional wastewater collection network. In such cases, the system acts as a retention structure, designed to reduce peak flows in the surface water collection network.

Permeable Pavement with

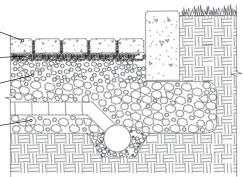
Permeable Pavement with Full Infiltration to Soil Subgrade

Partial Infiltration to Soil Subgrade

Permeable paver

Designed with a wider joint between the pavers to allow greater rainwater infiltration

Fine aggregates (2.5-10 mm)


Filters rainwater runoff contaminants

Medium aggregates (5-28 mm)

Transition layer continuing to filter pollutants

Coarse aggregates (40-80 mm)

Retention layer for rainwater recovery, with a drainage pipe to evacuate excess water

PERMEABLE PAVER 66

PERMEABLE PAVER DESIGN

The reasons for using a permeable paving system must be clearly established. It must be determined if the system allows for complete or partial water infiltration into native soil. When designing a permeable paving system, it is common practice to include a secondary surface water control system to manage surplus water not dealt with by the permeable paving system when precipitation exceeds levels anticipated during the design process.

Once the basic parameters have been established, the permeable paving system is then designed, taking into account site conditions such as precipitation data (for recurrence and intensity) and affluent runoff surfaces other than the paving surface itself (if applicable), as well as the runoff characteristics of these surfaces. These datas allow the designer to establish the flow and volume of water that will percolate through the permeable joints between the pavers and be collected in the crushed stone reservoir beneath the pavement.

Characteristics that are representative of the system's long-term absorption capacities must be used in the design stage. For applications where a periodical joints maintenance program will apply (rehabilitation of original permeability of joint material) and where permeability of natural soil is high, infiltration rates of 5 inches/hour and more can be used in design. Otherwise, the recommended conservative long-term infiltration rate for the design stage is 1 to 3 inches/hour.

Surface runoff is directed toward the crushed stone reservoir via openings (joints) in the paving system. AASHTO no. 9 crushed stone is used as a bed face for the pavers and to fill the joints between them. The bed face is generally 1 to 2 inches thick.

AASHTO number 9 grading

Nominal size (Sieves with square openings)	Pourcent passing%
3/8 in.	100
No. 4	85 to 100
No. 8	10 to 40
No. 16	0 to 10
No. 50	0 to 5

For pedestrian and low vehicular application like residential driveways, sidewalks, patios, the stone reservoir is generally made up of AASHTO no. 57 crushed stone with a void percentage of at least 32%—preferably 40%—to allow water to be stored inside. The thickness of the reservoir normally varies from 6 to 12 inches depending on anticipated traffic loads and surface water runoff. When water running over the pavement is to be absorbed by the native soil, a permeable geotextile membrane is usually placed below the stone reservoir. When the water collected cannot be absorbed by the existing soil, an impermeable membrane is installed at the bottom of the open graded base.

For application where medium to high vehicular circulation is expected, a sub base is generally added to the pavement structure. The sub base is generally made up of open graded AASHTO no. 2 crushed stone with a void percentage of 32 to 40%.

